COMBUSTION ANALYSIS

8:10 AM 23.04.2020 <	Analysis - Snapshot	100% 🎹	8:10 AM 23.04.2020 <	Analysis - Snapshot	100% 🛄
	Combustible: Prop	oane	-	Combustible: Pro	pane
O_2	20.9	%	O2	20.9	%
CO_2	50	%	CO_2	50	%
T _{gas}	90	°C	T gas	90	°C
	30	°C		30	°C
Qs	8.6	°C	Qs	8.6	°C
NO	20	ppm	NO	20	ppm
H₂	4	ppm	H₂	4	
H₂S	30	ppm	H₂S	30	ppm
* • *	<i>∝</i> ¢ 1 (2	 8:10 - 23.04.20	a a x a a b x a b x a b x a b x b b x a b x b x x b x b x x b x x b x x x x x x x x x x x x x x x x x x x x x x	

1	Configuration of the main analysis parameters.
2	This button captures the snapshot of the sample measurement on the screen. On the next page it will be possible to print or store the measurements relating to the acquired sample.
3	LAST ANALYSIS: Date and time of the last analysis performed.
4	Stores the acquired sample in memory.
5	View the QR code relating to the analysis performed on the display.
6	Start the printing of the performed analysis, according to the settings made in the appropriate dedicated parameter on the home page.
7	Turns on / off the gas sampling pump. If the gas sampling pump is off, the current measures refresh is stopped.

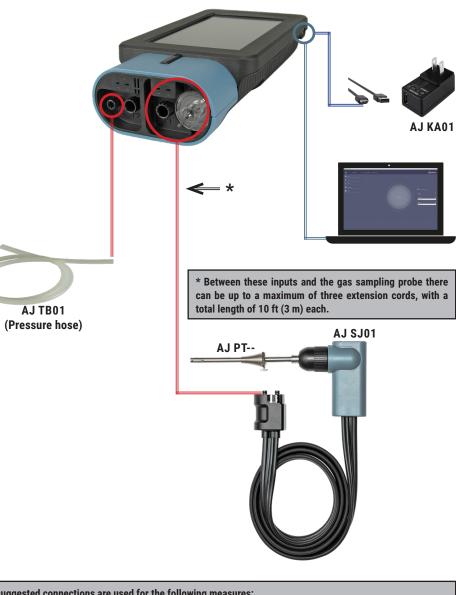
FEATURES:

- Flue gas analysis
- Calculating stack heat loss and efficiency
- Ambient CO measurement
- Measuring differential pressure
- Draft measurement
- Simultaneous gas pressure measurement
- Altitude adjustment
- QR code display in order to download the data of the acquired measurements
- Ticket printing with the measurements data using built-in printer (if provided) or using the (optional) Bluetooth® printer

The magnets in the back of the instrument can damage credit cards, hard driver, mechanical watches, pacemakers, defibrillators and other devices proven sensitive to magnetic fields.

It is recommended to keep the instrument at a distance of at least 25cm away from these devices.

Seitron respects the nature and the environment, therefore provides this quick user guide of the NoVO analyzer.


You can download the PC software "SEITRON SMART ANALYSIS" and the complete user and maintenance manual from our website www.seitronamericas.com.

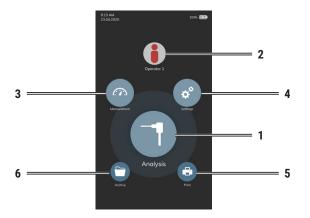
Respect your environment: think before printing the full manual on paper.

J10000000S9 038322 061221

OPERATION

The suggested connections are used for the following measures:

- O₂ - Gases: CO - NO - SO₂ - CxHy - NO₂ - H₂ - CO₂ - NH₃ - Efficiency calculation - Combustion analysis


- Simultaneous measurement of gas pressure at the burner

POWER ON / POWER OFF

	INSTRUMENT	ACTION	FUNCTION	
	CONDITION	ACTION	FUNCTION	
	OFF (powered off)	Press and hold the key indicated by the arrow for a long time (> 3sec.)	The instrument powers on* and starts the automatic auto zero phase	
	ON (powered on)	Press and hold the key indicated by the arrow for a long time (> 3sec.)	The instrument turns off after completing the cleaning cycle for the set time.	

*: At the first start, the instrument will guide the user step by step to the first configuration

MAIN MENUS

	Performs the complete combustion analysis.
1	Moreover, it access the analysis configuration menu; the user can set each single parameter of the
	instrument to perform the combustion analysis.
2	Enters the Operator menu.
	It is possible to select the name of the operator performing the analysis, which will be printed on the analysis report.
3	Access the Measurements menu.
	The user accesses all the accessory measurements that the instrument can perform.
4	Access the configuration menu; the user can set the different reference parameters of the instrument.
5	Accesses the Print menu.
6	Access the Archive menu.
	The user displays the measurements stored in the memory.